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Abstract
Strong monads and premonoidal categories play a central role in clarifying the denotational

semantics of effectful programming languages. Unfortunately, this theory excludes many
modern semantic models in which the associativity and unit laws only hold up to coherent
isomorphism: for instance, because composition is defined using a universal property.

This paper remedies the situation. We define premonoidal bicategories and a notion of
strength for pseudomonads, and show that the Kleisli bicategory of a strong pseudomonad is
premonoidal. As often in 2-dimensional category theory, the main difficulty is to find the correct
coherence axioms on 2-cells. We therefore justify our definitions with numerous examples and
by proving a correspondence theorem between actions and strengths, generalizing a well-known
category-theoretic result.

1 Introduction
Moggi famously observed that the category-theoretic notion of strong monad encapsulates the struc-
ture of effectful programs, and hence one can give a denotational model of an effectful programming
language using a strong monad on a cartesian (or more generally, monoidal) category ([63, 64]).
The approach was refined by Power & Robinson, whose premonoidal categories axiomatize the core
structure of Moggi’s models [73]. These insights give a framework for studying existing models and
constructing new ones, abstracting away from the particular choice of effect.

On the other hand, in recent years a plethora of models have been proposed which are not
categories but bicategories [2]. These models come with more structure, and typically provide finer-
grained or more intensional information that traditional categorical ones. Examples include various
kinds of game semantics ([8, 60]), recent models of linear logic based on profunctors ([18, 19, 27]),
and models describing the βη-rewrites of the simply-typed λ-calculus ([36, 21]).

This paper is the first step in extending the Moggi–Power–Robinson framework to these new
examples. We introduce bicategorical versions of strong monads and premonoidal categories, and
validate these definitions through examples and theorems paralleling the categorical theory.

We begin with a brief overview of monadic semantics (Section 1.1). Then we introduce and
motivate bicategories (Section 1.2), and outline our main contributions (Section 1.3).

1.1 Strong monads and premonoidal categories
A strong monad on a monoidal category (C,⊗, I) is a monad (T, µ, η) equipped with a natural
transformation tA,B : A⊗TB → T (A⊗B) known as a strength, compatible with both the monoidal
structure of C and the monadic structure of T ([46], or Section 3). In this setting, an effectful
program (Γ ⊢M : A) is modelled by a Kleisli arrow Γ→ TA in C and substitution into another
program (∆, x : A ⊢ N : B) is modelled using the strength and the Kleisli extension operation:

∆⊗ Γ ∆⊗M−−−−→ ∆⊗ TA t−→ T (∆⊗A) >>=N−−−−→ TB.
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This approach provides a sound and complete class of semantic models for certain effectful
languages [64]. But it also involves some indirect aspects: programs are not interpreted in C but
in the Kleisli category CT . Premonoidal categories [73] remedy this by directly axiomatising the
structure of CT required for the semantic interpretation; they more directly reflect the structure of
effectful languages in which a monad is not explicit (e.g. [63, 25]).
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Figure 1: Control flow and data flow in a premonoidal bicategory.
Here M and N represent program fragments which cannot be re-
ordered—for instance, different print statements—and the dashed red
line indicates control flow.

A premonoidal category is a cate-
gory D equipped with a tensor prod-
uct ⊗ that is only functorial in each
argument separately. Effectful pro-
grams are interpreted directly as mor-
phisms in D, and the substitution
above is interpreted as

∆⊗ Γ ∆⊗M−−−−→ ∆⊗A N−→ B.

This approach strictly generalises the
previous one: if (C,⊗, I) is symmet-
ric monoidal, then any strength for
the monad T induces a premonoidal
structure on CT , but there are also
examples of premonoidal categories
not arising from a monad (e.g. [83, 72, 80]).

The lack of functoriality of ⊗ reflects the fact that one cannot generally re-order the statements
of an effectful program, even if the data flow permits it. So the composition of morphisms in a
premonoidal category should be understood as encoding control flow. This is illustrated in Figure 1
using the graphical calculus for premonoidal categories ([40, 76]).

1.2 The case for bicategories
As indicated above, many recent models form bicategories instead of categories. Roughly speaking,
a bicategory is like a category except the unit and associativity laws for the composition of
morphisms are replaced by well-behaved isomorphisms. This kind of structure typically arises when
composition is defined using a universal construction; for an illustrative example we consider a
bicategory of spans, that occurs widely in models of programming languages and computational
processes (e.g. [60, 17, 31, 1]).

Example. Spans of sets

Consider a model in which objects are sets and a morphism from A to B consists of a set S and
a span of functions A ←− S −→ B. We can compose pairs of morphisms A ←− S −→ B and
B ←− R −→ C using a pullback in the category of sets:

R ◦ S

S R

A B C

⌟

This composition correctly captures a notion of ‘plugging together’ spans, but is only associative in
a weak sense. Indeed, the two ways of taking pullbacks

•

•

• • •

• • • •

⌟

⌟
•

•

• • •

• • • •

⌟

⌟ (1)

are generally not equal, but they are canonically isomorphic via the universal property of pullbacks.
Similarly, the span A

id←− A
id−→ A is only a weak identity for composition, because pulling back

along id only gives an isomorphic set.
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To describe composition in this model, therefore, we require a notion of morphism between
spans. If S and S′ are spans from A to B, then a map between them is a function σ : S → S′ that
commutes with the span legs on each side:

S S′

A B

σ

The two iterated composites in (1) are isomorphic as spans, so composition of spans is associative
up to isomorphism. Similarly, the identity span is unital up to isomorphism and, because these
isomorphisms arise from a universal property, they behave well together. Bicategories axiomatize
such situations.
Definition 1 ([2]). A bicategory B consists of:

• A collection of objects A,B, . . .

• For all objects A and B, a collection of morphisms from A to B, themselves related by
morphisms: thus we have a hom-category B(A,B) whose objects (typically denoted f, g : A→
B) are called 1-cells, and whose morphisms (typically denoted σ, τ : f ⇒ g) are called 2-cells.
The category structure means we can compose 2-cells between parallel 1-cells.

• For all objects A,B, and C, a composition functor ◦A,B,C : B(B,C)×B(A,B) −→ B(A,C)
and, for all A, an identity 1-cell IdA ∈ B(A,A).

• Coherent structural 2-cells: since the composition of 1-cells is weak, we have a natural family
of invertible 2-cells af,g,h : (f ◦ g) ◦ h =⇒ f ◦ (g ◦ h) instead of the usual associativity equation.
Similarly, we have natural families of invertible 2-cells lf : IdB ◦ f =⇒ f and rf : f ◦ IdA =⇒ f
instead of the left and right identity laws. These structural 2-cells must satisfy coherence
axioms similar to those for a monoidal category.

The 2-dimensional structure of a bicategory lets one describe relationships between morphisms,
which can be used to provide refined semantic information (e.g. [36, 21, 84, 65, 44]). To illustrate
further, we consider the Para construction, which is a general way to build models of parametrized
processes [23] (see also [6, 14, 77]). In this bicategory, the 2-cells describe how processes can be
reparametrized; thus the weakness arises because we are tracking extra information. We will use
this bicategory several times, so we spell out the definition in detail.

Example: the Para construction. Starting from a monoidal category (C,⊗, I), we construct
a bicategory Para(C) as follows:

• The objects are those of C.

• A 1-cell from A to B is a parametrized C-morphism, defined as an object P ∈ C together
with a morphism f : P ⊗A→ B in C. The object P is thought of as a space of parameters.

• A 2-cell from f : P ⊗ A → B to g : P ′ ⊗ A → B is a reparametrization map, i.e. a map
σ : P → P ′ such that g ◦ (σ ⊗A) = f .

Composition of 1-cells is defined using the tensor product of parameters: if f : P ⊗ A → B and
g : Q⊗B → C, then g ◦ f is the object Q⊗ P equipped with the map

(Q⊗ P )⊗A
∼=−→ Q⊗ (P ⊗A) Q⊗f−−−→ Q⊗B g−→ C

where the first map is the associativity of the tensor product.
If we also have h : R ⊗ C → D, then the two composites (h ◦ g) ◦ f and h ◦ (g ◦ f) have

parameter spaces (R ⊗ Q) ⊗ P and R ⊗ (Q ⊗ P ), respectively. Because the tensor product in a
monoidal category is generally only associative up to isomorphism, these 1-cells are only isomorphic
in Para(C). A similar argument applies to the identity laws, so Para(C) is a bicategory with a, l
and r given by C’s monoidal structure. In fact, if C is symmetric monoidal, this lifts to a symmetric
monoidal structure on Para(C): see Section 2.3.
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1.3 This paper: semantics for effects in bicategories
The central aim of this paper is to ‘bicategorify’ the definitions of strong monad and premonoidal
category. A definition in category theory typically involves data subject to equations expressed
as commutative diagrams. In bicategory theory these equations are replaced by invertible 2-cells
filling each diagram, and then we have equations on these 2-cells. The main challenge, therefore, is
knowing what the 2-cell equations should be. This can be difficult and subtle, even for experts.
For example, symmetric monoidal structure is apparently innocuous and well-understood, but
the history of its bicategorical definition is littered with missteps: see [78, §2.1] for an overview.
We therefore stipulate the following necessary (but not necessarily sufficient) desiderata for the
‘correctness” of a bicategorical definition:

1. It’s not too strict to capture the relevant examples;

2. It’s not too weak to prove results one would expect, so the 1-dimensional theory lifts to the
2-dimensional setting;

3. Some form of coherence theorem holds.

In this paper we tackle (1) and (2): we justify our definitions both by providing examples and by
showing that our definitions are consistent with other standard bicategorical constructions. This
follows a pattern common in the literature, where the difficulty of coherence proofs means that one
typically wants to fix a definition before proving coherence (see, for instance, the long gap between
the introduction of pseudomonoids [42] and the first coherence proof we are aware of [47]).1

Contributions. First, we define a notion of strength for pseudomonads (Section 3) and give
a range of examples, including a bicategorical version of the fact that every monad on Set is
canonically strong (Section 3.3).

Next we show that, just as strengths on a monad correspond to certain actions on its Kleisli
category (see e.g. [57, Proposition 4.3]), so strengths for a pseudomonad correspond to certain
actions on its Kleisli bicategory (Section 4 and Theorem 1). This correspondence is well-known in
the categorical setting, where actions are sometimes used directly to axiomatise models for effectful
languages (see e.g. [62]).

In Section 6 we turn to premonoidal structure. We introduce premonoidal bicategories and show
that the Kleisli bicategory of a strong pseudomonad is premonoidal (Theorem 2). We also observe
that graded monads ([79, 59, 43]) which track quantitative information about side effects, have a
natural notion of Kleisli bicategory and that this is premonoidal.

We finish with a summary of the main results and related work, and suggestions for further
investigation (Section 7).

2 Background: pseudofunctors, pseudomonads, and monoidal
bicategories

Many concepts in category theory have corresponding versions for bicategories. We first summarise
the basic definitions of pseudofunctors, pseudonatural transformations, and modifications (Sec-
tion 2.1), then discuss the bicategorical notions of monad (Section 2.2) and monoidal structure
(Section 2.3) we need for this paper. For reasons of space we only give a brief outline and omit
the coherence axioms. For a full overview of the basic bicategorical definitions, see [50]; for the
definition of (symmetric) monoidal bicategories, including many beautiful diagrams, see [81]. Read-
able introductions to the wider subject of bicategories include [2, 41]; a more theoretical-computer
science perspective is available in [70, 71].

1It turns out that our definition of strong pseudomonad is coherent. However, like many coherence results the
proof is both long and technical, so we shall present it elsewhere.
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2.1 Basic notions
Morphisms of bicategories are called pseudofunctors. Just as bicategories are categories ‘up to
isomorphism’, so pseudofunctors are functors ‘up to isomorphism’.

Definition 2. A pseudofunctor F : B → C consists of:

• A mapping F : ob(B)→ ob(C ) on objects;

• A functor FA,B : B(A,B)→ C (FA,FB) for every A,B ∈ B;

• A unitor ψA : IdFA
∼==⇒ F (IdA) for every A ∈ B;

• A compositor ϕf,g : F (f) ◦ F (g)
∼==⇒ F (f ◦ g) for every composable pair of 1-cells f and g,

natural in f and g.

This data is subject to three axioms similar to those for strong monoidal functors (see e.g. [50]).

We generally abuse notation by referring to a pseudofunctor (F, ϕ, ψ) simply as F ; where there
is no risk of confusion, we shall employ similar abuses for structure throughout. A pseudofunctor is
called strict if ϕ and ψ are both the identity.

Example 1. Every endofunctor F on a monoidal category (C,⊗, I) with a strength tA,B : A ⊗
F (B) → F (A ⊗ B) (see e.g. [46]) determines a strict endo-pseudofunctor F̃ on Para(C). The
action on objects is the same, and on 1-cells F̃ (P ⊗ A f−→ B) is the object P together with the
composite

(
P ⊗ FA t−→ F (P ⊗A) Ff−−→ FB

)
.

Transformations between pseudofunctors are like natural transformations, except one must say
in what sense naturality holds for each 1-cell.

Definition 3. For pseudofunctors F,G : B → C , a pseudonatural transformation η : F ⇒ G
consists of:

• A 1-cell ηA : FA→ GA for every A ∈ B;

• For every f : A→ B in B an invertible 2-cell

FA FB

GA GB

Ff

ηA
ηf⇐ ηB

Gf

(2)

natural in f and satisfying identity and composition laws.

Example 2. Every natural transformation σ : F ⇒ F ′ between strong endofunctors (F, s) and (G, t)
which is compatible with the strengths (‘strong natural transformation’: see e.g. [57]) determines a
pseudonatural transformation σ̃ : F̃ ⇒ G̃ on Para(C). Each component (σ̃)A is just σ̃A, and for a
1-cell f : P ⊗A→ B the 2-cell σ̃f witnessing naturality is the canonical isomorphism I⊗P

∼=−→ P ⊗I
in C.

Because bicategories have a second layer of structure, there is also a notion of map between
pseudonatural transformations.

Definition 4. A modification m : η → θ between pseudonatural transformations F ⇒ G : B → C
consists of a 2-cell mB : ηB ⇒ θB for every B ∈ B, subject to an axiom expressing compatibility
between m and each ηf and θf .

For any bicategories B and C there exists a bicategory Hom(B,C ) with objects pseudofunctors,
1-cells pseudonatural transformations, and 2-cells modifications. There is also a product bicategory
B × C formed component-wise: objects are pairs (B,C), and 1-cells and 2-cells are obtained using
the cartesian product of categories: (B × C )((B,C), (B′, C ′)) := B(B,B′)× C (C,C ′).
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2.2 Pseudomonads and Kleisli bicategories
The bicategorical correlate of a monad is a pseudomonad.

Definition 5 ([54]). A pseudomonad on a bicategory B consists of a pseudofunctor T : B → B
equipped with:

• Unit and multiplication pseudonatural transformations η : id⇒ T and µ : T 2 =⇒ T , where
T 2 = T ◦ T ;

• Invertible modifications m,n,p with components

T 3A T 2A

T 2A TA

µT A

TµA

µA

µA
mA

TA

T 2A TA T 2A

ηT A

µA

TηA

µA

nA pA

replacing the usual monad laws, and satisfying two further coherence axioms (see e.g. [47]).

Pseudomonads have a rich theory (e.g. [54, 55, 13]). Here we explore their application to
denotational semantics but there are many other applications, including universal algebra (in
the study of variable binding [37, 20] and operads [30]) and formal category theory (e.g. [68]).
The dual notion of pseudocomonad also arises naturally, for instance in the context of linear
logic (e.g. [19, 66, 27]).

A simple example is given by the Writer pseudomonad on Cat, the bicategory with objects
small categories, 1-cells functors, and 2-cells natural transformations. The structural isomorphisms
a, l and r are all the identity (giving a 2-category).

Example 3. Let (C,⊗, I) be a monoidal category. The pseudofunctor (−)×C : Cat→ Cat has a
pseudomonad structure with 1-cell components

ηD = D
∼=−→ D× 1 D×I−−−→ D× C

µD = (D× C)× C
∼=−→ D× (C× C) D×⊗−−−→ D× C

and 2-cell components m,n and p given by the associator and unitors for the monoidal structure
in C.

Example 4. Every strong monad (T, µ, η, t) on a monoidal category (C,⊗, I) determines a pseu-
domonad on Para(C): the underlying pseudofunctor is T̃ and the pseudonatural transformations
are µ̃ and η̃. (This remains true if the monoidal structure is replaced by an action [67].)

Just as monads have Kleisli categories, pseudomonads have Kleisli bicategories [10]. If T is
a pseudomonad on B, the Kleisli bicategory BT has the same objects as B and hom-categories
BT (A,B) := B(A, TB). The identity on A is the 1-cell ηA ∈ B(A, TA) and the composite of
f ∈ B(A, TB) and g ∈ B(B, TC) is defined to be

A TB T 2C TC.
f Tg µC (3)

The structural 2-cells a, l, r in BT are constructed using the pseudomonad structure.
For example, for f ∈ BT (A,B), precomposing with ηA satisfies the identity law up to the

invertible 2-cell
TA T 2B

A TB TB

ηA

Tf

µB

f

ηT B

nB

ηf

which becomes the component rf .
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In (3), and in the “pasting” diagram above, we have drawn the composition of morphisms in
the bicategory B as we would in a category, ignoring issues of weak associativity and identity. This
relies on coherence: see Section 2.4 for a discussion.

We finish with a final class of examples arising from universal algebra. These are some of the
key instances of pseudomonads, but less important for our concerns here.
Example 5. Just as algebraic structure on a set is described by monads on Set, so many examples
of algebraic structure on categories can be described by pseudomonads on Cat. Examples include
completions under a class of colimits, or adding finite products: see e.g. [10, 38].

Similarly, many structures of interest in the study of substitution and variable binding arise
as internal monads (see [82]) in the Kleisli bicategory of a 2-monad on Cat which is extended
canonically to a pseudomonad on Prof via the theory of [20]. For example, by taking the free finite
product 2-monad on Cat, one may identify many-sorted algebraic theories (clones) as internal
monads in the associated Kleisli bicategory over Prof [37].

2.3 Monoidal bicategories
A monoidal bicategory is a bicategory equipped with a unit object and a tensor product which is
only weakly associative and unital. To motivate the various components of the construction, we
explain how a symmetric monoidal category (C,⊗, I) induces a monoidal structure on Para(C),
with the same action on objects.

The idea is that we can combine the parameters using ⊗. For 1-cells f : P ⊗ A → B and
g : P ′ ⊗A′ → B′, we set f ⊗̃ g to be the object P ⊗ P ′ equipped with

(P ⊗ P ′)⊗ (A⊗A′)
∼=−→ (P ⊗A)⊗ (P ′ ⊗A′) f⊗g−−−→ B ⊗B′

where the first map is defined using the symmetry of ⊗. On 2-cells, we use the tensor product of maps
in C. This construction does not strictly preserve identities and composition, but it does preserve
them up to isomorphism. Thus, we get a pseudofunctor ⊗̃ : Para(C)×Para(C) −→ Para(C).

We examine the sense in which this tensor is associative and unital, by lifting the structural
isomorphisms from C. Note that every map f : A→ B in C determines a 1-cell f̃ in Para(C) given
by the object I and the composite (I ⊗A

∼=−→ A
f−→ B), where ∼= is the unit isomorphism. If f has

an inverse f−1, the composite f̃ ◦ f̃−1 has parameter I ⊗ I and thus cannot be the identity. But it
is isomorphic to the identity: the pair (f̃ , f̃−1) is known as an equivalence (an ‘isomorphism up to
isomorphism’). Thus, although the tensor ⊗ on C is associative and unital up to isomorphism, the
tensor ⊗̃ on Para(C) is only associative and unital up to equivalence. The structural 1-cells are all
pseudonatural in a canonical way (Example 2).

Following the general pattern of bicategorification, the triangle and pentagon axioms of a
monoidal category now only hold up to isomorphism: one route round the pentagon has three
sides and the other has two, so one composite has parameter I⊗3 and the other has parameter I⊗2.
These are canonically isomorphic, so we get families of invertible 2-cells witnessing the categorical
axioms. All the structure we have defined so far has used the canonical isomorphisms of C, so these
families are actually modifications on Para(C). Moreover, by the axioms of a monoidal category,
these structural modifications satisfy axioms of their own.

In summary, a monoidal bicategory is a bicategory equipped with an object I, a pseudofunctor
⊗̃, pseudonatural families of equivalences witnessing the weak associativity and unitality of ⊗̃, and
invertible modifications witnessing the axioms of a monoidal category.

We now make this precise, starting with the definition of equivalences. These generalize
equivalences of categories.
Definition 6. An equivalence between objects A and B in a bicategory B is a pair of 1-cells
f : A→ B and f• : B → A together with invertible 1-cells f ◦ f• ⇒ IdB and IdA ⇒ f• ◦ f .

A pseudonatural equivalence is a pseudonatural transformation in which each component has
the structure of an equivalence; this induces an equivalence in the hom-bicategory.

The definition is now as advertised. To state it, we introduce some notation for the 2-cell
diagrams—known as pasting diagrams—that we will use in the rest of the paper.

7



((AB)C)D (AB)(CD) A(B(CD))

(A(BC))D A((BC)D)

α

αD p

α

α

Aα

AB

(AI)B A(IB)

ρB

α

Aλ
m

(IA)B I(AB)

AB

α

λ

λB
l

(AB)I A(BI)

AB

α

ρ

Aρr

Figure 2: The structural modifications of a monoidal bicategory

Notation 1. To save space and improve readability,

• We use juxtaposition for the tensor product, e.g. (AB)C means (A⊗B)⊗ C;

• We omit the subscripts on the components of pseudonatural transformations and modifications,
e.g. m instead of mA;

• We use a subscript notation for the action of a pseudofunctor T , e.g. TATB
means T (A⊗T (B)).

• We write ∼= for any pseudonaturality 2-cell as in (2), and in equations we omit the arrows
showing the directions of 2-cells. These labels can be inferred from the type.

Definition 7 (e.g. [81]). A monoidal bicategory is a bicategory B equipped with a pseudofunctor
⊗ : B ×B → B and an object I ∈ B, together with the following data:

• Pseudonatural equivalences α, λ and ρ with components αA,B,C : (A⊗B)⊗C → A⊗ (B ⊗C)
(the associator), λA : I ⊗A→ A, and ρA : A⊗ I → A (the unitors);

• Invertible modifications p, l,m and r with components shown in Figure 2, subject to coherence
axioms.

A symmetric monoidal bicategory is a monoidal bicategory equipped with a pseudonatural equivalence
β with components βA,B : A ⊗ B → B ⊗ A, called the braiding, and invertible modifications
governing the possible shufflings of three objects and expressing the symmetry of the braiding, subject
to coherence axioms.

For example (see e.g. [81] for full details), the cartesian product on the category Set induces a
monoidal structure on the bicategory Span(Set) introduced in Section 1.2. The pseudofunctor ⊗
is defined on objects as A⊗ A′ = A× A′, and for spans A← S → B and A′ ← S′ → B′ we take
the component-wise product to obtain A×A′ ← S × S′ → B ×B′.

We also record the outcome of our discussion above; this establishes a conjecture made in [6].

Example 6. If (C,⊗, I) is a symmetric monoidal category, this lifts to a symmetric monoidal
structure on Para(C).

General point. The coherence axioms of a monoidal bicategory can be difficult to verify directly.
However, in many cases of interest the monoidal structure is induced from a more fundamental
construction, as in Span(Set) above. This gives a systematic method for constructing (symmetric)
monoidal bicategories, described abstractly in [85].
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2.4 Coherence theorems
As we have seen, bicategorical structures involve considerable data and many equations. Much of
the difficulty, however, is tamed by various coherence theorems. These generally show that any
two parallel 2-cells built out of the structural data are equal. Appropriate coherence theorems
apply to bicategories [53] pseudofunctors [33], (symmetric) monoidal bicategories ([32, 34]) and
pseudomonads [47].

We rely heavily on the coherence of bicategories and pseudofunctors when writing pasting
diagrams of 2-cells: in particular we omit all compositors and unitors for pseudofunctors, and
ignore the weakness of 1-cell composition. Thus, strictly speaking our diagrams do not type-check,
but coherence guarantees the resulting 2-cell is the same no matter how one fills in the structural
details. This is standard practice; for a detailed justification see e.g. [78, §2.2].

3 Strong pseudomonads
We follow the categorical setting by first saying what it means for a pseudofunctor to be strong,
then giving the additional data and axioms to make a pseudomonad strong. Section 3.3 contains
many examples.

3.1 Strong pseudofunctors
For the moment we only consider strengths on the left. In all diagrams below we follow our
Notation 1.

Definition 8. Let (B,⊗, I) be a monoidal bicategory. A left strength for a pseudofunctor T :
B → B is a pseudonatural transformation tA,B : A ⊗ TB → T (A ⊗ B), equipped with invertible
modifications x and y expressing the compatibility of t with the left unitor and the associator:

TIA ITA

TA

t

Tλ

λ
x

(AB)TC T(AB)C

A(BTC) ATBC TA(BC)

t

α

At t

Tα

y

These modifications must themselves be compatible with the monoidal structure, as per the three
axioms of Figure 3.

Remark 1. The three axioms of a strong pseudofunctor have a natural symmetry. Each diagram
can be viewed as a cylinder, with the structural modifications of the monoidal bicategory (in pink)
as the top and bottom. The axioms then stipulate how to pass these structural modifications through
x,y and z from the top to the bottom of the cylinder.

A left strength for a pseudofunctor T can be used to define a parametrised version of the
functorial action: for any map Γ⊗X → Y we can now define a map Γ⊗ TX → TY . This suggests
the following (recall Example 1 and Example 2).

Example 7. If (F, t) is a strong functor on a symmetric monoidal category (C,⊗, I), then the
induced pseudofunctor F̃ on Para(C) is also strong. The pseudonatural transformation has com-
ponents t̃A,B := t̃A,B; this has parameter I, so x and y are both of the form I⊗i ∼=−→ I⊗j for
i, j ∈ N.

3.2 Strong pseudomonads
If a strong pseudofunctor T : B → B is also a pseudomonad, then we must ask for additional
data to relate the strength and the monad structure, and this data must be compatible with the
modifications x,y we already have.

9



A(ITB) (AI)TB

ATIB ATB

TA(IB) T(AI)B

TAB

α

At

t

ρTB

ATλ

t

t

TρBTAλ

Aλ

∼=

∼=

m

Ax

=

A(ITB) (AI)TB

ATIB

TA(IB) T(AI)B

TAB

α

At

t

t

TρBTAλ

Tα

y

Tm

I(ATB) (IA)TB

ITAB ATB

TI(AB) T(IA)B

TAB

α

It

t

t

TλBTλ

λ

t

λTB

λ

x

∼=

∼=

l

=

I(ATB) (IA)TB

ITAB

TI(AB) T(IA)B

TAB

α

It

t

t

TλBTλ

Tα

Tl

y

A((BC)TD) (A(BC))TD

A(B(CTD)) ((AB)C)TD

A(BTCD) (AB)(CTD)

ATB(CD) (AB)TCD

TA(B(CD)) T((AB)C)D

T(AB)(CD)

αTD

α

Aα

α α
A(Bt)

At

Tα

(AB)t

t

Tα

tα

t y

∼=

y

p

=

A((BC)TD) (A(BC))TD

A(B(CTD)) ((AB)C)TD

A(BTCD) AT(BC)D

ATB(CD) TA((BC)D) T(A(BC))D

TA(B(CD)) T((AB)C)D

T(AB)(CD)

αTD

α

Aα

A(Bt)

At

Tα Tα

t

t
TAα

Tα

TαD

At

t
ATα

∼=

t

Tp

Ay

∼=

y

Figure 3: Coherence axioms for a strong pseudofunctor.
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Definition 9. Let (B,⊗, I) be a monoidal bicategory. A left strength for a pseudomonad (T, η, µ)
consists of a left strength (t,x,y) for the underlying pseudofunctor, together with invertible modifi-
cations

AT 2
B ATB

TATB
T 2
AB TAB

Aµ

t

Tt
µ

w t

AB ATB

TAB

t

η

Aη

z

expressing the compatibility of t with the pseudomonad structure. This is subject to the coherence
axioms of Figure 4, namely: three axioms expressing compatibility with the monad structure, two
axioms laws relating x respectively with z and w, and two axioms relating y respectively with z
and w.

Extending Example 4 and Example 7, we obtain the following. The 2-cells w and z are defined
similarly to x and y.

Example 8. A strong monad on a symmetric monoidal category (C,⊗, I) determines a strong
pseudomonad on Para(C).

3.3 Examples of strong pseudomonads
In this section we show that several important classes of pseudomonad are strong in the way one
would expect from the categorical setting; these help confirm that our definitions are correct. In
each case the proof makes heavy use of the relevant coherence theorem for checking the axioms.

First, recall that if (M,m, e) is a monoid in a monoidal category (C,⊗, I) then the functor (−)⊗M
becomes a monad with unit and multiplication given via e and m (c.f. Example 3). This monad is
canonically strong, with strength given by the canonical isomorphism (A⊗B)⊗M

∼=−→ A⊗ (B⊗M).
Also note that every monad T is strong with respect to the cocartesian structure (0,+), with
strength [T inl ◦ ηA, T inr] : A+TB → T (A+B). These facts bicategorify. The bicategorical version
of a monoid is called a pseudomonoid ([42, 15]), and every pseudomonoid defines a pseudomonad
similarly to Example 3.

Lemma 1.

1. For any pseudomonoid (M,m, e, a, l, r) on a monoidal bicategory (B,⊗, I) the pseudomonad
(−)⊗M has a strength given by the associator α of ⊗.

2. Every pseudomonad is canonically strong with respect to the cocartesian monoidal structure
(+, 0).

Proof. For both claims, one constructs the data by following the corresponding 1-categorical
argument and filling the commuting diagrams with the appropriate 2-cells; the equations hold
by coherence. For (1), for instance, the structural modifications x and y are given using l and p,
respectively, while w and z are given using r and p, respectively, together with the pseudonaturality
of α•. The axioms hold by the coherence of pseudomonoids [47]. Similarly for (2): the strength has
components [T inl ◦ ηA, T inr] : A+ TB → T (A+B) and the structural modifications are given by
taking the categorical proof and filling in the commuting diagrams with the appropriate 2-cells. The
equations hold by coherence for bicategories with finite products [69] and the fact all the structural
2-cells are invertible.

In particular, a pseudomonoid in (Cat,×, 1) is a monoidal category so Lemma 1(1) applies
to the Writer pseudomonad (Example 3). We can also use this lemma to derive a result about
pseudomonads on spans. For any category C with pullbacks there exists a bicategory of spans
Span(C) similar to that defined in Section 1.2 for Set. For C := Set, or more generally any
lextensive category [7], the bicategory Span(C) has finite biproducts—bicategorical products and
coproducts which coincide—by [49, Theorem 6.2]. Moreover, by [35, Corollary A.4], every cartesian
monad (monad for which the underlying functor preserves pullbacks, and such that every naturality
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AT 2
B ATB

TATB
ATB

T 2
AB TAB

t

tTt

µ

Aµ

Aη

w
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=
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B ATB

TATB
TAB

T 2
AB TAB

t

Tt

µ

t

η

η

Aη

∼=

z

n

AT 2
B ATB

TATB
ATB

T 2
AB TAB
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µ

ATη
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=
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B ATB
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ATη
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t t
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Tη
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Tt
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T 3
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AB TAB

t

Tt

T 2t

Tµ

µ

Aµ
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t

ATµ
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t

Tt

TAµ

∼=
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Tw w

ITA IA

A

TIA TA

Iη

t

Tλ

λ

η

η
z

∼=

=

ITA IA

A

TIA TA

Iη

t

Tλ

λ

η

λ
x

∼=

TITA
IT 2

A

T 2
IA ITA

T 2
A TA

Tt

T 2
λ

µ

t

Iµ

λ

Tλ λTx

x

∼=

=

TITA
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A

T 2
IA TAI ITA

T 2
A TA

Tt

T 2
λ

µ

t

Iµ

λ

µ t

Tλ

∼=

w

x

(AB)T 2
C (AB)TC

A(BT 2
C) T(AB)TC

T 2
(AB)C T(AB)C

ATBTC
TA(BTC )

AT 2
BC TATBC

T 2
A(BC) TA(BC)

(AB)µ

t

Tα

α

At

ATt

t Tt
µ

t

TAt

t

Tα

Tt µ

T 2
α

y

∼=

∼=

w

Ty

=

(AB)T 2
C (AB)TC

A(BT 2
C) A(BTC) T(AB)C

ATBTC
ATBC

AT 2
BC TATBC

T 2
A(BC) TA(BC)

(AB)µ

t

Tα

α

At

ATt

t Tt
µ

A(Bµ)

α

At

tAµ

y

∼=

Aw

w

(AB)TC (AB)C

A(BTC) A(BC)

ATBC TA(BC)

(AB)η

α

At

t

α
A(Bη)

ηAη
Az

z

∼=

=

(AB)TC (AB)C

A(BTC) T(AB)C A(BC)

ATBC TA(BC)

(AB)η

α

At

t

α

η

t η

Tα

z

y

∼=

Figure 4: Coherence axioms for a strong pseudomonad.
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square for µ and η is a pullback square) lifts to a pseudomonad on Span(C). So we have the
following.

Corollary 1. Any cartesian monad on a lextensive category C (such as Set) lifts to a strong
pseudomonad on Span(C)

The next example covers two cases of importance in the semantics of programming languages. The
proof follows essentially immediately from the corresponding categorical facts and the particularly
strong form of coherence enjoyed by cartesian closed bicategories (see [22, Principle 1.3]).

Lemma 2. For any cartesian closed bicategory (see e.g. [21]) (B,×, 1,=▷) and objects S,R ∈ B,
there exist strong pseudomonads S=▷(S × −) (the state pseudomonad) and (−=▷R) =▷R (the
continuation pseudomonad).

For our final class of examples, recall that every functor F on Set is canonically strong with
respect to the cartesian structure, with tA,B : A × FB → F (A × B) defined by tA,B(a,w) :=
F (λb .⟨a, b⟩)(w), and moreover that the same construction makes every monad on Set strong [64,
Proposition 3.4]. A similar fact holds for bicategories.

Proposition 1. Every pseudofunctor (resp. pseudomonad) on (Cat,×, 1) has a canonical choice
of strength.

Proof sketch. Similarly to the categorical proof, for any pseudofunctor F : Cat → Cat, and
a ∈ A one has F (λb .⟨a, b⟩) : F (B) → F (A × B). However, since F is now a pseudofunctor
we also have a natural transformation F (λb .⟨f, b⟩) for each f : a → a′ in A, with components
F (λb .⟨f, b⟩)w : F (λb .⟨a, b⟩) → F (λb .⟨a′, b⟩) in F (A × B). We may therefore define a functor
tA,B : A × FB → F (A × B) sending a pair of objects (a,w) to F (λb .⟨a, b⟩)(w) and a pair of
morphisms (a f−→ a′, w

g−→ w′) to the composite F (λb .⟨a′, b⟩)(g) ◦ F (λb .⟨f, b⟩)w. This is functorial
because F is functorial on natural transformations and F (λb .⟨a, b⟩) is a functor, and pseudonatural
via the compositor for F .

Then x and y are defined using the compositor and unitor for F , and the coherence of
pseudomonads ensures the axioms hold. Finally, if T is a pseudomonad then one defines w and z
using the pseudonaturality of η and µ: this is similar to the proof in the categorical setting, where
one uses the naturality of the unit and multiplication to show the two compatibility laws hold.
Again, the axioms follow from coherence.

In summary, there are many natural examples of strong pseudomonad. Beyond the general
examples we have presented, there are concrete examples arising in denotational semantics, e.g. linear
continuation pseudomonads in dialogue categories [61], to be studied independently.

4 Actions of monoidal bicategories
In this section we justify our definition of strength (Definition 9) by showing a bicategorical version
of a well-known correspondence theorem (e.g. [57, Proposition 4.3]). We show that to give a
left strength for a pseudomonad T on (B,⊗, I) is to give a left action of (B,⊗, I) on the Kleisli
bicategory BT that extends the monoidal structure.

We start by defining actions of monoidal bicategories. We are not aware of a definition in the
literature, but it is clear what it ought to be. As observed in [39], a left action on a category is
equivalently a bicategory with two objects and certain hom-categories taken to be trivial. We
therefore define a left action on a bicategory so it is equivalently a tricategory (see [32]) with
two objects and certain hom-bicategories taken to be trivial. It follows from the coherence of
tricategories ([32, 33]) that every diagram of 2-cells constructed using the structural data of an
action must commute. More explicitly:
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Definition 10. A left action of a monoidal bicategory (B,⊗, I) on a bicategory C consists of a
pseudo-functor ▷ : B × C → C , together with the following data:

• Pseudonatural equivalences λ̃ and α̃ with components

λ̃X : I ▷ X → X α̃A,B,X : (A⊗B) ▷ X → A ▷ (B ▷ X);

• Invertible modifications as shown below, satisfying the same coherence axioms as p,m, and l
in a monoidal bicategory ( e.g. [81]):

((AB)C) ▷ X

(A(BC)) ▷ X
(AB) ▷ (C ▷ X)

A ▷ ((BC) ▷ X)

A ▷ (B ▷ (C ▷ X))

p̃
α̃

A▷α̃

α̃

α̃

α▷X

(IA) ▷ X I ▷ (A ▷ X)

A ▷ X
λ▷X

α̃

λ̃

l̃

A ▷ X

(AI) ▷ X A ▷ (I ▷ X)

ρ▷X

α

A▷λ̃

m̃

The tensor product ⊗ : B ×B → B on a monoidal bicategory determines an action of B on
itself, with all the structure given by the monoidal data. We call this the canonical action of a
monoidal bicategory on itself. Every strong pseudomonad also induces an action.

Proposition 2. Every strong pseudomonad (T, t) on (B,⊗, I) induces an action of B on the Kleisli
bicategory BT , where the pseudofunctor ▷ : B ×BT → BT is given on objects by A ▷ B = A⊗B,
and on morphisms as

f ▷ g :=
(
A⊗B f⊗g−−−→ A′ ⊗ TB′ t−→ T (A′ ⊗B′)

)
for f : A→ A′ and g : B → TB′.

Proof sketch. The action on 2-cells is the same as that on morphisms. The compositor and unitor
for ▷ are given by the modifications w and z that come with the strength. We use x and y to
construct the strength data λ̃ and α̃ from the monoidal data λ and α, and finally we use z again to
lift p,m, l to p̃, m̃, l̃. The strength axioms ensure that this forms an action.

The action ▷ : B ×BT → BT induced by a strong pseudomonad can be seen as an extension
of the canonical action ⊗ : B ×B → B given by the monoidal structure. Indeed, we have a
pseudonatural transformation

B ×BT BT

B ×B B

▷

⊗

B×K Kθ (4)

where K : B → BT is the identity-on-objects pseudofunctor which sends f : A→ A′ to ηA′ ◦ f :
A→ TA′. Moreover, the two actions ▷ and ⊗ agree on objects, and the 1-cell components θA,B of
the transformation are all the identity. Such a transformation is known as an icon [48]. The 2-cell
components of θ are nontrivial: for each f : A→ A′ and g : B → B′ we have an isomorphism

θf,g : f ▷ K(g)
∼==⇒ K(f ⊗ g)

derived from the modification z, satisfying the coherence laws.
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4.1 A correspondence theorem
We now prove an equivalence between left strengths and left actions, based on the following
definition.

Definition 11. For a pseudomonad T on a monoidal bicategory (B,⊗, I), an extension of the
canonical action of B on itself is a pair (▷, θ) consisting of a left action ▷ : B ×BT → BT and an
icon θ as in (4) such that the structural data λ̃, α̃, l̃, m̃, p̃ for the action extends the corresponding
monoidal data via K and θ. Explicitly, for all objects A,B,C,D and morphisms f : A → A′,
g : B → B′, and h : C → C ′ in B:

1. λ̃A = KλA, and

IA A

IA′ A′

Kλ

Kλ

Kf
I▷Kf

θ Kλf
=

IA A

IA′ A′

λ̃

λ̃

KfI▷Kf λ̃Kf

2. α̃A,B,C = KαA,B,C , and

(AB)C A(BC)

(A′B′)C ′ A′(B′C ′)

Kα

Kα

fg▷Kh θ Kαf,g,h
=

(AB)C A(BC)

(A′B′)C ′ A′(B′C ′)

α̃

α̃

K(f(gh))α̃ f▷θ θ

3.
(IA)B I(AB)

AB

Kα

K(λB)
Kλ

λ▷B

θ

Kl =
(IA)B I(AB)

AB

α̃

λ̃λ▷B
l̃

4.
(AI)B A(IB)

AB

Kα

K(Aλ)

ρ▷B A▷λ̃

K(ρB)
Km

θθ

=
(AI)B A(IB)

AB

α̃

A▷λ̃ρ▷B
m̃

5.

((AB)C)D

(A(BC))D

(AB)(CD)

A((BC)D)

A(B(CD))

Kα

Kα

Kα

α▷D

A▷Kα

Kp

θ

θ

=

((AB)C)D
(A(BC))D

(AB)(CD)
A((BC)D)

A(B(CD))

α̃

α̃

α̃

α▷D

A▷α̃

p̃

Remark 2. Just as we have defined an action to be a tricategory with two objects and certain data
taken to be trivial, so one may alternatively present the preceding definition as a trihomomorphism
(morphism of tricategories [32]) with certain data taken to be trivial. This follows the tradition
for defining structure for monoidal bicategories, such as monoidal pseudofunctors, as ‘one-object’
versions of the corresponding tricategorical structure ( c.f. [9]).
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Our correspondence theorem uses the following two categories for a pseudomonad T on (B,⊗, I):

• LeftStr(T ), the category whose objects are left strengths for T , and whose morphisms from
t to t′ are modifications which commute with all the strength data;

• LeftExt(T ), the category whose objects are extensions of the canonical action of B on itself,
and whose morphisms from (▷, θ) to (▷′, θ′) are icons ▷⇒ ▷′ which commute with θ and θ′.

Theorem 1. For any pseudomonad T on a monoidal bicategory (B,⊗, I), the categories LeftStr(T )
and LeftExt(T ) are equivalent.

Proof notes. The proof follows the categorical construction (see [57, Prop. 4.3]). For every left
strength t for T , the induced action ▷ : B ×BT → BT extends the canonical action of B on itself,
by construction. Conversely, any extension (▷, θ) induces a strength tA,B = idA ▷ idTB , where idTB
is regarded as an element of BT (TB,B). These constructions are inverses, up to isomorphism, as
we verify directly. We then verify the axioms. In each direction, there is a tight match-up between
the equations of the given structure and the equations for the required structure; for an outline, see
Table 1.

Thus, actions and strengths are related in the bicategorical setting just as they are in the
categorical one. This provides further justification for the coherence axioms of Definition 9.

5 Pseudomonads with a strength on each side
Categorically, it is often the case that a monad T supports a strength on both sides, and the two
strengths are compatible: T is then called bistrong (see e.g. [57]). This is the case, for instance, if
T has left strength t and the underlying category is symmetric monoidal, because we can construct
a right strength using the left strength and the symmetry β, as follows:

T (A)⊗B β−→ B ⊗ T (A) t−→ T (B ⊗A) Tβ−−→ T (A⊗B). (5)

We now bicategorify these results. As well as providing an important sanity-check for our definitions,
this covers the situation most common in semantics. In Section 6 we shall see that having
two compatible strengths is a requirement for the Kleisli bicategory of a pseudomonad T to be
premonoidal.

Strength Action

Axioms for a strong
pseudofunctor (Fig. 3)

Modification axioms
for the 2-cells m̃, l̃, p̃

determined by Def. 11 (3, 4, 5)
Compatibility between

m,n,p and z,w
(Top row in in Fig. 4)

Pseudofunctor axioms
for ▷ : B ×BT → BT

Compatibility between x and z,w
(Middle row in Fig. 4)

Pseudonaturality of the transformation
λ̃ determined by Def. 11(1)

Compatibility between y and z,w
(Bottom row of axioms in Fig. 4)

Pseudonaturality of the transformation
α̃ determined by Def. 11(×2)

Table 1: Relating the data and equations on each side of the correspondence in Theorem 1.
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5.1 Compatible left and right strengths
A right strength for a pseudomonad consists of a pseudonatural transformation sA,B : TA⊗B →
T (A⊗B) equipped with four invertible modifications analogous to x, y, z, w.

Informally, a left strength tA,B : A⊗TB → T (A⊗B) and a right strength sA,B : TA⊗B → T (A⊗
B) are compatible if parameters on each side can be passed through T in any order. Categorically,
one makes this precise by asking that the two obvious maps (A⊗ TB)⊗ C → T (A⊗ (B ⊗ C)) are
equal. For the bicategorical definition, we replace this equation by a coherent isomorphism.

Definition 12. A bistrong pseudomonad on a monoidal bicategory (B,⊗, I) is a pseudomonad T
equipped with a left strength t and a right strength s, and an invertible modification

(ATB)C A(TBC)

TABC ATBC

T(AB)C TA(BC)

α

AstC

s

Tα

t

b

satisfying the two axioms in Figure 5.

This definition is sufficient to recover the categorical situation: if (B,⊗, I) is symmetric monoidal
and (T, t) is a left-strong pseudomonad, then the composite pseudonatural transformation with
components as in (5) can always be given the structure of a right strength for T .

Proposition 3. Every left-strong pseudomonad on a symmetric monoidal bicategory is bistrong in
a canonical way.

5.2 Towards commutative pseudomonads
A bistrong monad on a monoidal category is called commutative if the two obvious maps
T (A)⊗ T (B)→ T (A⊗B) are equal ([45, 46]). In computational terms, commutativity means that
we can re-order program statements. Some well-known side-effects (probability, divergence) are
commutative, while many others (continuations, state) are not.

A promising starting point for commutativity would be the notion of pseudo-commutative
2-monad [38]. Thus, a commutative pseudomonad should be a bistrong pseudomonad (T, t, s) with
an invertible modification

TATB TATB
T 2
AB

TTAB T 2
AB TAB

s

µt

Ts µ

Tt

γ

representing the commutativity, satisfying a number of coherence properties such as those of [38,
§3.2]. We leave the validation of this definition as a topic for further study.

6 Premonoidal bicategories
Finally, we introduce premonoidal bicategories; we then validate this definition by showing the
Kleisli bicategory of a bistrong pseudomonad is premonoidal (Section 6.4).

6.1 Premonoidal categories
Premonoidal categories axiomatize the semantics of effectful languages more directly than strong
monads, in the sense that a program (Γ ⊢ P : A) is interpreted as a morphism Γ→ A. For such
a model to be sound, one must deal with the fact that statements in effectful programs cannot
generally be re-ordered (recall Figure 1). So if we have another program (∆ ⊢ Q : B), there are
two ways of interpreting the pair

(
Γ⊗∆ ⊢ (P,Q) : A⊗B

)
, depending on whether we run P or Q

17



(AB)C A(BC)

(ATB)C A(TBC)

TABC ATBC

T(AB)C TA(BC)

α

(Aη)C

tC

s

Tα

η

t

Aη

A(ηC)
α

As z

Az′

∼=

b

=

(AB)C A(BC)

(ATB)C

TABC T(AB)C TA(BC)

α

(Aη)C

tC

s Tα

η
η

ηC ∼=

z′C

z

(AT 2
B)C A(T 2

BC)

TATB
C ATTBC A(TBC)

T(ATB)C TA(TBC) AT 2
BC

TTABC TATBC
ATBC

T 2
(AB)C T 2

A(BC)

T(AB)C TA(BC)

α

tC

s

Tα

As

t

TtC

Ts

T 2α

Tt

µ

Tα

µ

ATs

t
Aµ

A(µC)

As

t

TAs

∼=

Tb

b

Aw′

w

∼=

=

(AT 2
B)C A(T 2

BC)

TATB
C (ATB)C A(TBC)

T(ATB)C T 2
ABC

TTABC TABC ATBC

T 2
(AB)C

T(AB)C TA(BC)

α

s

TtC

Ts

µ

Tα

A(µC)

As

t

tC (Aµ)C

α

TtC

s

tC

s

∼=

b

w′

wC

∼=

Figure 5: Coherence axioms for a bistrong pseudomonad.
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first. As a consequence, ⊗ is not a functor of two arguments. In this section we briefly recall the
formal definition and the premonoidal structure of a key example, namely the Kleisli category of a
bistrong monad.

First, some preliminaries. A binoidal category is a category D equipped with functors

A⋊ (−) : D −→ D (−) ⋉B : D −→ D

for every A,B ∈ D, such that (A⋊−)(B) = (−⋉B)(A). We write A⊗B, or just AB, for their
joint value. (The notation is intended to suggest that ⋊ is a ‘complete’ functor only on the right.)
A map f : A→ A′ is central if the two diagrams

AB AB′

A′B A′B′

A⋊g

f⋉B f⋉B′

A′⋊g

BA B′A

BA′ B′A′

g⋉A

B⋊f B′⋊f

g⋉A′

(6)

commute for every g : B → B′. Semantically, f corresponds to a program which may be run at any
point without changing the observable result. We can now give the definition.

Definition 13 ([73]). A premonoidal category is a binoidal category (D,⋊,⋉) equipped with a unit
object I and central isomorphisms ρA : AI → A, λA : IA→ A and αA,B,C : (AB)C → A(BC) for
every A,B,C ∈ D, satisfying the triangle and pentagon axioms for a monoidal category and the five
following naturality conditions:

(AB)C (A′B)C

A(BC) A′(BC)

(f⋉B)⋉C

α α

f⋉(BC)

(AB)C (AB′)C

A(BC) A(B′C)

α

(A⋊g)⋉C

α

A⋊(g⋉C)

(AB)C (AB)C ′

A(BC ′) A(BC ′)

α

(AB)⋊h

α

A⋊(B⋊h)

IA IA′

A A′

λ

I⋊f

λ

f

AI A′I

A A′

ρ

f⋉I

ρ

f

Notice that α cannot be a natural transformation in all arguments simultaneously, because ⊗ is
not a functor on C.

One motivating example for premonoidal categories is the Kleisli category of a bistrong monad
(T, t, s) on a monoidal category (C,⊗, I), where for every A,B, f and g we have

A⋊ g :=
(
AB

A⊗g−−−→ ATB′
t−→ TAB′

)
f ⋉B :=

(
AB

f⊗B−−−→ TA′B
s−→ TA′B

)
.

(7)

The structural data is lifted from C. Premonoidal categories are therefore a clean axiomatization of
the monadic semantics, which also captures first-order effectful languages whose syntax does not
explicitly involve a monad (e.g. [63, 74]).

6.2 Binoidal bicategories and centrality
We now turn to the bicategorical setting. Following the general bicategorical pattern, centrality for
1-cells will be extra data, rather than a property. This raises new subtleties, notably because it
affects the type of the structural modifications.

Definition 14. A binoidal bicategory is a bicategory B equipped with pseudofunctors A⋊ (−) and
(−) ⋉B for every A,B ∈ B, such that A⋊B = A⋉B.
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We denote the structure by (B,⋊,⋉), and as before we write A⊗B, or just AB, for the joint
value on objects.

To define centrality, observe that saying the diagrams in (6) commute for every g is exactly
saying that the families of maps f ⋉B and B ⋊ f are natural in B.

Definition 15 (Central 1-cell). A central 1-cell in a binoidal bicategory (B,⋊,⋉) is a 1-cell
f : A→ A′ with 2-cells

AB AB′

A′B A′B′

A⋊g

f⋉B f⋉B′lcf
g

A′⋊g

BA B′A

BA′ B′A′

g⋉A

B⋊f B′⋊frcf
g

g⋉A′

(8)

for every g : B → B′, forming pseudonatural transformations

(A⋊−) f⋊−===⇒ (A′ ⋊−) and (−⋉A) −⋉f===⇒ (−⋉A′)

respectively.

Definition 16 (Central 2-cell). A central 2-cell σ between central 1-cells (f, lcf , rcf ) and
(f ′, lcf

′
, rcf ′) is a 2-cell σ : f ⇒ f ′ such that the 2-cells σ ⋉ B and B ⋊ σ (for B ∈ B) de-

fine modifications lcf ⇒ lcf
′

and rcf ⇒ rcf ′ , respectively.

Every monoidal bicategory (B,⊗, I) has a canonical binoidal structure, with A⋊ (−) := A⊗ (−)
and (−) ⋉B := (−)⊗B. Every 1-cell in B canonically determines a central 1-cell because for any
f and g we can set lcfg and (rcgf )−1 both to be intf,g, defined using the compositor for ⊗ as follows:

intf,g :=
AB AB′

A′B A′B′

A⊗g

f⊗B′

A′⊗g

f⊗gf⊗B
ϕ

ϕ (9)

By the functoriality of ⊗, every 2-cell becomes central.
For any bistrong pseudomonad (T, s, t) on a monoidal bicategory (B,⊗, I), the Kleisli bicategory

BT is binoidal: the pseudofunctors ⋊ and ⋉ are given as in (7), and every pure 1-cell f̃ := η ◦ f :
A→ TA′ becomes central with lcf̃ and rcf̃ constructed using structural data.

6.3 Premonoidal bicategories
As indicated above, the definition of premonoidal bicategory involves some subtleties not present in
the categorical setting, particularly around the 2-cells. We begin by outlining these issues and how
we deal with them.

Pseudonatural associators and unitors. In Definition 13 the associator α can only be natural
in each argument separately because ⊗ is not a functor of two arguments. Similarly, we can only
ask that the associator is pseudonatural in each argument separately. This entails asking for three
pseudonatural transformations: one for each of the three naturality diagrams for α in Definition 13.
Precisely, we ask that for every A,B,C ∈ B and f, g, h as in that definition, we get 2-cells αf,B,C ,
αA,g,C and αA,B,h giving pseudonatural transformations

(α−,B,C , α−,B,C) : (−⋉B) ⋉ C ⇒ (−) ⋉ (B ⊗ C)
(αA,−,C , αA,−,C) : (A⋊−) ⋉ C ⇒ A⋊ (−⋉ C)
(αA,B,−, αA,B,−) : (A⊗B) ⋊ (−)⇒ A⋊ (B ⋊−)

(10)

We also need to give unitors ρ and λ, but for these pseudonaturality is straightforward since there
is only one argument.
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Structural modifications in each argument. The main remaining work is in giving the
structural modifications. Just as in the case of α above, we cannot ask for modifications p,m, l
and r as we do for a monoidal bicategory: instead we must ask for families of 2-cells satisfying the
modification condition in each component separately.

This introduces a new issue. In a monoidal bicategory, the fact that the structural modifications
are modifications in each argument relies on ⊗ being a pseudofunctor of two arguments. For
example, the type of l (see Figure 2) uses the pseudonatural transformation with components
λA⊗B : (IA)B → AB. For g : B → B′, the 2-cell witnessing pseudonaturality of this transformation
is the interchange isomorphism intλA,g defined in (9). This 2-cell does not exist in a premonoidal
bicategory, so instead we must use the centrality witness lcλA

g for λA. Thus, we define l to be a
family of 2-cells lA,B : (λA ⋉B)⇒ λA⊗B ◦ αI,A,B that is a modification in each argument, in the
sense that for every A,B ∈ B we get modifications in Hom(B,B) as follows:

(I ⋊−) ⋊B (−⋉B)

I ⋊ (−⋉B)

λ⋉B

αI,−,B

l−,B
λ−⋉B

(IA) ⋊ (−) (A⋊−)

I ⋊ (A⋉−)

lcλ

αI,A,−
lA,−

λA⋊−

Notice that the left-hand diagram is exactly as in the definition of a monoidal bicategory: no
adjustments are necessary because each transformation is pseudonatural in the open argument.

We repeat this process for each of the four structural modifications to obtain our definition of
premonoidal bicategory: Figure 6 gives the diagrams that are not exactly as in the definition of
a monoidal bicategory. (To save space we suppress the ⋊ and ⋉: these can be inferred from the
bracketing.) Although we have changed the conditions for p,m, l and r to be modifications, the
equations of a monoidal bicategory are still well-typed. We also require only that the 1-cell data is
central, because the centrality of 2-cells such as αf,B,C can be derived in the cases of interest: see
Proposition 6.

Premonoidal bicategories. We give the main definition. Despite the subtleties outlined above,
the passage from premonoidal categories is very natural.

Definition 17. A premonoidal bicategory is a binoidal bicategory (B,⋊,⋉) with a unit I ∈ B
and the following data:

1. Pseudonatural equivalences λ : I ⋊ (−)⇒ id and ρ : (−) ⋉ I ⇒ id with each 1-cell component
central;

2. An central 1-cell αA,B,C for every A,B,C ∈ B, with pseudonatural data as in (10), and such
that each component αA,B,C is an equivalence;

3. For each A,B,C,D ∈ B, invertible 2-cells pA,B,C,D,mA,B , lA,B and rA,B, such that these
form modifications in each argument as in Figure 6 or, if not shown there, in Figure 2.

This data is subject to the same equations between 2-cells as in a monoidal bicategory (see e.g. [81]).

6.4 Premonoidal Kleisli bicategories
We now arrive at our main theorem.

Theorem 2. For any bistrong strong pseudomonad (T, s, t) on a monoidal bicategory (B,⊗, I),
the Kleisli bicategory BT is premonoidal, with binoidal structure given as in (7).

Proof. The binoidal structure is as in (7), with s defined as in (5). Then, the proof consists in
constructing a compatible pair of a left action and a right action, where “compatible” means that
the two associators coincide on 1-cells, and the structural 2-cells p̃ and m̃ coincide. All of this is
verified directly, based on the construction of the actions in Theorem 1.
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(−B)(CD)

((−B)C)D (−)(B(CD))

(−(BC))D (−)((BC)D)

α−,B,CDα−B,C,D

α−,B,CD

p−,B,C,D

α−,BC,D

rcα

(AB)(C−)

((AB)C)(−) A(B(C−))

(A(BC))(−) A((BC)(−))

αA,B,C−αAB,C,−

lcα

pA,B,C,−

αA,BC,−

AαB,C,−

(−)B

(−I)B (−)(IB)

ρB

α−,I,B

rcλ

m−,B

A(−)

(AI)(−) A(I−)

lcρ

αA,I,−

Aλ

mA,−

(IA)(−) I(A−)

A(−)

αI,A,−

λ

lcλ lA,−

(−B)I (−)(BI)

AB

α−,B,I

ρ−B

rcρ
r−,B

Figure 6: Modification axioms for the structural 2-cells of a premonoidal bicategory,
where they differ from those of a monoidal bicategory.

The only remaining difficulty is the pseudonaturality of α in its middle argument, since this is
not required for either of the actions. This is where the 2-cell given by the bistrong structure is
used.

By Proposition 3, we immediately get the following.

Corollary 2. For any strong pseudomonad (T, t) on a symmetric monoidal bicategory (B,⊗, I),
the Kleisli bicategory BT is premonoidal, with binoidal structure given as in (7).

In constructing this premonoidal structure we make essential use of the following result. For f
a morphism in B, write f̃ for the image of f under the pseudofunctor B → BT .

Lemma 3. For f ∈ B(A,A′), f̃ ∈ BT (A,A′) is canonically central. Moreover, for every 1-cell
g ∈ B(B,B′), lcf̃g̃ = (rcg̃

f̃
)−1.

6.4.1 Further examples: graded monads and Para

Another source of examples, which we were not expecting when we began this work, comes from
graded monads ([79, 59, 43]). A graded monad goes beyond just tracking side-effects to also tracking
quantitative information. Formally, a graded monad on C consists of a monoidal category (E, •, I)
of grades and a lax monoidal functor T : E → [C,C]. Thus, one has a functor Te : C → C for
every e ∈ E, natural in e, together with natural transformations ϕe,e′ : T ′

e ◦ Te ⇒ Te′•e (acting
like a monadic multiplication) and ψ : id ⇒ TI (acting like a monadic unit) satisfying unit and
associativity laws. For example, the graded list monad L on Set has grades given by the strict
monoidal category (N,×, 1) of natural numbers under multiplication, and Ln(X) is the set of lists
of length at most n. This can be used as a refinement of the usual list monad, with the grade giving
an upper bound for the number of branches in a non-deterministic computation (e.g. [56]).

Instead of restricting to the symmetric case as we do in Theorem 2, we consider abstract bistrong
graded monads. An endofunctor T : C→ C equipped with two strengths tA,B : A⊗TB → T (A⊗B)

22



and sA,B : TA⊗B → T (A⊗B) is bistrong if

(ATB)C A(TBC) ATBC

TABC T(AB)C TA(BC)

α

tC

s Tα

As

t

commutes. Then, a small adjustment to Katsumata’s definition of strong graded monads gives the
following.

Definition 18 (c.f. [43, Definition 2.5]). A bistrong graded monad on a monoidal category (C,⊗, I)
consists of a monoidal category (E, •, I) of grades and a lax monoidal functor T : E→ [C,C]bistrong,
where [C,C]bistrong is the category of bistrong endofunctors and natural transformations that commute
with both strengths (see e.g. [57]).

Thus, a bistrong graded monad is a graded monad further equipped with natural transformations
teA,B : A⊗ Te(B)→ Te(A⊗B) and seA,B : Te(A)⊗B → Te(A⊗B) for every grade e, compatible
with the graded monad structure and with maps between grades.

Previous work (e.g. [56]) has used presheaf enrichment to define Kleisli constructions for graded
monads. However, there is also a natural bicategorical construction:

Definition 19. Let T be a bistrong graded monad on (C,⊗, I) with grades (E, •, I). Define a
bicategory KT with objects those of C as follows:

• 1-cells from A to B are pairs (e, f) consisting of a grade e and a map f : A→ TeB;

• 2-cells γ : (e, f)⇒ (e′, f ′) are maps γ : e→ e′ in E such that Tγ(B)◦f = f ′, with composition
as in E;

• Composition is defined similarly to Kleisli composition: the composite of f : A→ TeB and
g : B → Te′C is

A
f−→ TeB

Teg−−→ Te(Te′C) ϕ−→ Te•e′C

The identity on A is A ψA−−→ TIA, and the structural isomorphisms are the structural isomor-
phisms in E.

(One could also present this bicategory as Para(C,E, ∗)op where maps are parametrized by the
left action of E on C with e ∗A := Te(A).)

If the graded monad T is bistrong, one obtains strict pseudofunctors A⋊(−), (−)⋉B : KT → KT
for every A,B ∈ KT , defined similarly to (7). Moreover, just as every map in C determines a 1-cell
in Para(C), every map f ∈ C(A,A′) determines a 1-cell with grade I in KT , as

f̃ :=
(
A

f−→ A′ ψ′
A−−→ TIA

′).
This 1-cell canonically determines a central 1-cell, with lcf̃ and rcf̃ given by the canonical isomor-
phism in C. In particular, we get the following.

Lemma 4. For f ∈ C(A,A′), f̃ ∈ KT (A,A′) is canonically central. Moreover, for every 1-cell
g ∈ C(B,B′), lcf̃g̃ = (rcg̃

f̃
)−1.

In a similar fashion, the structural isomorphisms for the monoidal structure on E define
pseudonatural equivalences on KT with each component central. These all have grade I, so one can
take the structural modifications in KT all to be canonical isomorphisms of the form I⊗i ∼=−→ I⊗j

for i, j ∈ N. Summarising, we have the following.

Proposition 4. For any bistrong graded monad (T, ϕ, ψ) the bicategory KT has a canonical choice
of premonoidal structure. Moreover, if E is strict monoidal, then this structure is strict: each
pseudofunctor A ⋊ (−) and (−) ⋉ B is strict, and the structural transformations and structural
modifications are all the identity.
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6.5 Aside: bicategories of pure maps
In a premonoidal category D, the central morphisms form a wide subcategory Z(D) called the centre.
The definition directly entails that the centre is a monoidal category, and the inclusion Z(D) ↪→ D
strictly preserves premonoidal structure. In this section we briefly explore the question of monoidal
structure on the centre of a monoidal bicategory. The key difference from the categorical setting is
that the bicategorical notion of centrality is structure in the form of extra data, not just a property:
instead of the inclusion Z(C) ↪→ C we now have a forgetful pseudofunctor Z(B)→ B. So for the
premonoidal structure to induce a monoidal structure, this extra data must also interact well with
all the data and equations of a monoidal bicategory.

In this section we will outline a notion of centre for premonoidal bicategories and observe that,
because central 1-cells do not satisfy certain equations that always hold in the monoidal case, the
centre does straightforwardly acquire a monoidal structure. Then we shall observe that, in our our
examples, these equations do in fact hold. By axiomatising this situation, we will recover sufficient
conditions for a sub-bicategory of a premonoidal bicategory to be monoidal.

We begin with a natural definition.

Definition 20. For a premonoidal category (B,⋊,⋉, I), denote by Z(B) the bicategory with the
same objects, whose 1-cells and 2-cells are the central 1-cells and central 2-cells in B. Composition
of 1-cells and 2-cells is defined using composition in Hom(B,B), and the identity on A is IdA with
the identity transformations. The structural 2-cells a, l and r are all inherited from B.

This definition does satisfy at least some of the expected properties. For example, for any
premonoidal bicategory (B,⋊,⋉, I) there exist strict pseudofunctors

Hl,Hr : Z(B)→ Hom(B,B) (11)

where Hl is given on objects by Hl(A) := A⋊(−), on 1-cells by setting Hl(f) to be the pseudonatural
transformation (f⋉(−), lcf ), and on 2-cells by setting Hl(σ) to be the modification with components
{σ ⋉ B | B ∈ B}; the other pseudofunctor Hr is defined likewise. In a similar vein, we have the
next result.

Proposition 5. Let (B,⋊,⋉, I) be a premonoidal bicategory. For every object A ∈ B the operations
A⋊ (−) and (−) ⋉B induce pseudofunctors on Z(B).

Proof sketch. The action of A⋊ (−) and (−) ⋉B on central 1-cells is given by requiring that the
following diagrams define modifications in Hom(B,B):

(XA)(−) (XA′)(−)

X(A−) X(A′−)

lcX⋊f

αX,A,− αX,f,− αX,A′,−

X⋊lcf

(AX)(−) (A′X)(−)

A(X−) A′(X−)

αA,X,−

lcf⋉X

αf,X,− αA′,X,−

lcf
X−

Long diagram chases then show that the unitor and compositor for each of A⋊ (−) and (−) ⋉B
are central, and that these pseudofunctors preserve centrality of 2-cells.

This result suggests that one could hope to restrict the premonoidal structure of B to a monoidal
structure on Z(B). However, there is a fundamental issue. In a premonoidal category (C,⋊,⋉, I)
one can show (f ⋉B′) ◦ (A⋊ g) = (A′ ⋊ g) ◦ (f ⋉B) using either the fact f is left central or the fact
g is right central, and these choices are equivalent. Indeed, the monoidal structure on the centre
Z(C) is defined by setting (f ⊗ g) to be either one of these choices. However, the corresponding
fact for central 1-cells, namely that lcfg = (rcgf )−1, does not hold in general, so one must choose
to use either lc or rc to define the compositor of the pseudofunctor ⊗. This asymmetry causes a
mismatch between ⊗ and the axioms of a premonoidal bicategory. For example, the equation for r
to be a modification on the centre at a pair of 1-cells f : A→ A′ and g : B → B′ uses lcfρ—arising
from the interchange law for ⊗—while the axiom on r uses rcρf (as in Figure 6), so one cannot apply
the axiom. Defining the compositor with rc instead runs into the same problem with l.
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On the other hand, this does not seem to be a problem in practice: as our examples above show,
in models of effectful languages the ‘pure’ 1-cells satisfy lcfg = (rcgf )−1 and the problem disappears
(see Lemma 3 and Lemma 4). In the rest of this section we shall show that, if one axiomatises
a version of this equation together with compatibility between the centrality witnesses and the
associator, then one does indeed recover a monoidal structure. The idea is to make a coherent
assignment of left- and right centrality witness to each 1-cell, and then take 2-cells which satisfy
the axioms for centrality with respect to these (but perhaps not all) 1-cells. This can be seen as
axiomatising versions of the pseudofunctors of (11) which are compatible with the premonoidal
structure. The cost is that, unlike the centre, the resulting structure is not unique: the coherent
assignments require a choice of centrality witnesses.

Definition 21. Let (B,⋊,⋉, I) be a premonoidal bicategory. A bicategory of pure maps is a
sub-bicategory C ↪→ B with the same objects as B, together with strict pseudofunctors L,R : C →
Hom(C ,C ) such that

1. Every structural 1-cell αA,B,C , λA, ρA is a 1-cell in C ;

2. L(A) = A⋊ (−) and R(B) = (−) ⋉B;

3. L(A f−→ A′) is a pseudonatural transformation (f ⋉ (−), lcf ) with 1-cell components f ⋉B :
A⊗B → A ⊗B, and R(B g−→ B′) is a pseudonatural transformation ((−)⋊ g, rcf ) with 1-cell
components A ⋊ g : A ⊗ B → A ⊗ B′, and these are compatible with the associator in the
sense that the following diagrams are modifications in Hom(B,B):

(A−)X (A′−)X

A(−X) A(−X)

lcf⋉X

αA,−,X αf,−,X αA′,−,X

lcf
−X

(X−)A (X−)A′

X(−A) X(−A′)

αX,−,A

rcf
X−

αX,−,f αX,−,A′

X⋊rcf

4. L(f σ=⇒ f ′) has components σ ⋉B and R(g τ=⇒ g′) has components A⋊ τ ;

5. L(f)g = R(g)f for all f, g in C .

We say a 2-cell σ : f ⇒ f ′ in B is central with respect to 1-cells in C if σ : f ⇒ f ′ in C .

We can now see the crucial difference between Z(B) and a bicategory of central maps. Categor-
ically, the inclusion functor Z(C) ↪→ C is faithful, but the corresponding pseudofunctor Z(B)→ B
is not injective on 1-cells (locally injective-on-objects): a 1-cell can be central in many ways. This is
remedied by bicategories of central maps, because the inclusion C ↪→ B is injective on both 1-cells
and 2-cells. We thereby recover a situation closer to the categorical setting, and can recover the
categorical theory.

The most difficult technical work is contained in the following proposition, which guarantees
that the premonoidal structure descends to the bicategory of pure maps. For the first part,
one uses the compatibility condition of Definition 21(3) to show that each lcfg is a modification
lc(f⋉B′)◦(A⋊g) ⇒ lc(A′⋊g)◦(f⋉B), then uses duality and the equation lcfg = (rcgf )−1 to deduce it also
satisfies the centrality condition on the right.

Proposition 6. For any bicategory of pure maps (C , L,R) of a premonoidal bicategory (B,⋊,⋉, I):

1. If (f, lcf , rcf ) and (g, lcg, rcf ) are 1-cells in C then every 2-cell lcfg and rcfg is central with
respect to 1-cells in C ;

2. The 2-cells αf,B,C , αA,g,C , αA,B,h, λf and ρf witnessing pseudonaturality of the structural
transformations in B are central with respect to 1-cells in C ;

3. The components of the structural modifications p,m, l and r are central with respect to 1-cells
in C .
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In the light of the proposition, we can collate the families of pseudofunctors {A ⋊ (−)}A∈B

and {(−) ⋉B}B∈B into a bona fide pseudofunctor of two arguments, and hence define a monoidal
structure. We define the tensor ⊗ on C using the theory of distributive laws between pseudofunctors
of [16]. Suppose given bicategories A,B and C together with families of pseudofunctors {A⋊ (−) :
B → C}A∈A and {(−) ⋉ B : A → C}B∈B that agree on objects in the sense that A⋊ B = A⋉ B
for all A,B. By [16, Theorem 6.1], to define a pseudofunctor A× B → C extending the mapping
on objects, it is sufficient to provide a distributive law, consisting of an invertible 2-cell δf,g :
(f ⋉B′) ◦ (A⋊ g)⇒ (A′ ⋉ g) ◦ (f ⋉B) for every f : A→ A′ and g : B → B′, subject to naturality,
unit, and composition axioms. In the case of a premonoidal bicategory, the 2-cells lcfg (or rcfg ) are
natural candidates for such a law. Using this, one can construct a monoidal structure in a similar
fashion to the categorical setting. Notice that this strategy does not succeed on Z(B): although
we do not have a concrete counterexample, we believe lcfg is not generally right central, so this
strategy is not even well-typed on Z(B).

Theorem 3. For any bicategory of pure maps (C , L,R) of a premonoidal bicategory (B,⋊,⋉, I):

1. Setting δf,g := lcfg defines a distributive law on C in the sense of [16], so the mapping ⊗ on
objects extends to a pseudofunctor with

(f ⊗ g) :=
(
A⊗B f⋉B−−−→ A′ ⊗B A′⋊g−−−→ A′ ⊗B′)

and similarly on 2-cells; the compositor is constructed using the compositors for the binoidal
structure and the left centrality witnesses.

2. The structural transformations and structural modifications for the premonoidal structure on
B define corresponding pseudonatural transformations and modifications on C with respect to
the pseudofunctor ⊗.

Hence, the premonoidal structure of B restricts to a monoidal structure (⊗, I) on C , and the
pseudofunctors L and R canonically extend to monoidal pseudofunctors.

Remark 3. This theorem gives a structure reminiscent of a Freyd category ([74, 52]), i.e. a
premonoidal category equipped with a chosen monoidal category to act as the centre. However,
there is a conceptual difference: here we have started from a notion of purity and constructed a
monoidal bicategory, while in a Freyd category the monoidal structure is given as part of the data.
We conjecture that these two approaches are closely related, and will explore this in future work.

7 Conclusion
We have introduced strong pseudomonads and premonoidal bicategories, and validated these
definitions with examples and theorems paralleling the categorical setting:

• Certain pseudomonads are canonically strong: for instance, any pseudomonad on (Cat,×),
any pseudomonad with respect to a cocartesian structure (0,+), or any pseudomonad of the
form (−)⊗M for M a pseudomonoid (Section 3.3);

• A left strength for a pseudomonad is equivalent to a left action on the Kleisli bicategory
extending the monoidal structure (Theorem 1);

• A left strong monad on a symmetric monoidal bicategory is also right strong (Proposition 3);

• The Kleisli bicategory for a strong pseudomonad is premonoidal (Theorem 2).

Thus, as outlined in Section 1.3, we can have a degree of confidence that our definition is not too
strict to capture examples one would expect, and not too weak to develop bicategorical versions of
the categorical theory.

Our contributions can be understood in two ways: as a practical tool towards new semantic
models for programming languages, or from the theoretical perspective of categorical algebra and
higher category theory.
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7.1 Perspectives in semantics
An important inspiration for this work was the theory of dialogue categories ([61, 58]), which explains
models of linear logic and game semantics in terms of Moggi-style computational effects. A dialogue
category is a symmetric monoidal category C equipped with a negation functor ¬ : C −→ Cop such
that the double negation functor ¬¬ : C −→ C extends to a strong monad. With our definition of
strong pseudomonads, we can incorporate recent bicategorical models (e.g. [8, 29, 27, 60, 18]) into
this theory. There are also connections to graded monads: see [59, 26].

Future work. A natural step would be to bicategorify the definition of Freyd categories, which
model effectful languages with an explicit collection of pure values ([74, 52]). This would build on
Section 6.5, where bicategories of pure maps should provide a leading example. Such a definition
should be validated by a appropriate correspondence theorem, in the style of our Theorem 1, lifting
the correspondence between actions and Freyd categories (e.g. [51, Appendix B]) to the bicategorical
setting. In a similar vein, models of higher-order call-by-value languages can be presented as closed
Freyd categories [75]. These are equivalent to a strong monad on a monoidal category with enough
closed structure ([52, 62]). One would therefore expect corresponding results relating closed Freyd
bicategories to strong pseudomonads. Further work is also needed to connect the Kleisli bicategory
for a graded monad presented here with existing Kleisli constructions such as that in [56].

In the spirit of Moggi’s programme ([63, 64]) it would be of interest to extract a 2-dimensional
monadic metalanguage as an internal language for our bicategorical models. Existing work already
covers the simply-typed λ-calculus [21].

Finally we note that, although higher-categorical definitions can sometimes be intimidating or
intractable, it is often possible (and generally preferable) to identify universal properties that make
the axioms hold automatically. It would be of use, therefore, to extend the framework of [85] for
constructing symmetric monoidal bicategories to the structures introduced here: the similarities in
the construction of the strong pseudomonads on Para(C) (Example 7) and Span(C) (Corollary 1)
suggest this is possible.

7.2 Perspectives in category theory and universal algebra
At a higher level, this work contributes to recent research on Kleisli bicategories and the theory
of substitution ([37, 19, 20, 28]). Perhaps the closest work to that presented here is the work
of Hyland & Power [38], which introduces a notion of pseudo-commutativity for strict bistrong
2-monads.

This work is also part of a lively line of research studying various kinds of weak monoidal
structure in higher dimensions ([4, 5, 24, 28]). From this perspective, the complexities with the
2-cells in the definition of premonoidal bicategories and their centres are perhaps unsurprising, since
the interaction between the “funny” tensor product (used to define premonoidal categories [73]),
higher-dimensional structure, and interchange laws is subtle, e.g. the funny tensor product does not
extend to a tensor on the 2-category Cat (also see e.g. [11, 3, 5]). Our definition of centre also
bears some similarities to the Drinfeld centre of a 2-category [12]; the difference being that there
one restricts to objects A equipped with an isomorphism A⊗ (−) ∼= (−)⊗A.

Future work. There are many accounts of strong monads in category theory, for example in terms
of enriched structure ([45, 46]). In this paper we have given a direct and explicit definition, but it
would be interesting to reconstruct the full theory. Similarly, we conjecture that Hyland & Power’s
definition of pseudo-commutativity for strict 2-monads will generalise smoothly to our setting,
giving examples which would be relevant for semantics (c.f. [64, 46]).
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